AP CALCULUS BC Unit 8 Outline –Parametric and Polar Equations

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
1/8	FINAL EXAM	Go Over Final Exam
HOMEWORK		None

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
D ATE 1/9	CONCEPT PARAMETRIC EQUATIONS FIRST AND SECOND DERIVATIVES OF PARAMETRIC EQUATIONS	IN-CLASS SAMPLE PROBLEMSWrite in Cartesian (rectangular) form and graph:1. $x = 5t$, $y = 25t^2$, $-2 < t < 2$ 2. $x = \sqrt{t}$, $y = t - 3$, $0 \le t \le 4$ 3. $x = \cos t$, $y = \sin t$, $0 \le t \le \pi$ 4. Find $\frac{dy}{dx}$ if $x = 3t + 1$ and $y = t^2$.5. Find $\frac{d^2 y}{dx^2}$ if $x = 3t^2 + 2$ and $y = 2t^4 - 1$ 6. Find the equation of the line tangent to $x = 5t$, $y = 25t^2$, $-\infty < t < \infty$ at $t = 2$.7. Find all points of horizontal and vertical tangency given $x = t^2 + t$ and $y = t^2 - 3t + 5$
Номежо	DRK	Worksheet 63

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
1/10	PARAMETRIC EQUATIONS	Ex. 1 Find the arc length of the given curve if $x = t^2$, $y = \frac{1}{3}t^3 - 2$, $0 \le t \le 2$	
	ARC LENGTH	Ex. 2 Find the length of the curve if $x = 3\sin t$, $y = 3\cos t$, $0 \le t \le \pi$	
		Ex. 3 Determine the leftmost point on the curve given by the parametric equations	
		$x(t) = \frac{1}{4}t^4 - \frac{9}{2}t^2$ and $y(t) = 3t^3 + 2t$ on the interval $0 \le t \le 4$?	
AP MULI	AF MULTIPLE CHOICE		
	d^2		
If $x(t) =$	If $x(t) = t^2 + 4$ and $y(t) = t^4 + 3$, for $t > 0$, then in terms of t , $\frac{d^2y}{dx^2} =$		
(A) $\frac{1}{2}$	(B) 2 (C) 4 <i>t</i>	(D) $6t^2$ (E) $12t^2$	
Номеwo	RK	Worksheet 64	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
1/11	VECTOR CALCULUS	Ex. 1 The position of a particle in the xy-plane is given by the parametric equations	
	PARTICLE MOTION	 s(t) = (2t³ + t, t²). a) Find the velocity and acceleration vectors at time t. b) Find the speed of the particle at time t = 2. c) Find the total distance traveled by the particle from time t = 0 to t = 2. 	
AP MULT	IPLE CHOICE		
For time	For time $t > 0$, the position of a particle moving in the xy-plane is given by the parametric equations		
x = 4t +	$x = 4t + t^2$ and $y = \frac{1}{3t+1}$. What is the acceleration vector of the particle at time $t = 1$?		
(A) $\left(2, \frac{1}{2}\right)$	$\frac{1}{32}\right) \qquad (B) \ \left(2, \frac{9}{32}\right)$	(C) $\left(5, \frac{1}{4}\right)$ (D) $\left(6, -\frac{3}{16}\right)$ (E) $\left(6, -\frac{1}{16}\right)$	
HOMEWO	PRK	Worksheet 65	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
1/12	VECTOR CALCULUS	Ex. 1 A particle moving along a curve so that its velocity for time $t \ge 0$ is given by
	PARTICLE MOTION	$v(t) = \left\langle 2e^{-\frac{t}{4}}, \frac{t-4}{t+5} \right\rangle.$
		a) For what values of <i>t</i> is the particle moving to the right?
		b) For what values of <i>t</i> is the particle moving up?
		Ex. 2 😽
		The velocity vector of a particle moving in the xy-plane is given by $v(t) = \langle \sin 2t, e^{\cos t} \rangle$. At
		time $t = 2$, the position of the particle is (3,2). What is the x-coordinate of the position
		vector at time $t = 3$?

AP MULTIPLE CHOICE

The position of a particle moving in the *xy*-plane is given by the parametric equations $x(t) = t^3 - 3t^2$ and $y(t) = 12t - 3t^2$. At which of the following points (x, y) is the particle at rest?

(A) (-4, 12) (B) (-3, 6) (C) (-2, 9) (D) (0, 0) (E) (3, 4)

A particle moves in the *xy*-plane with position given by $(x(t), y(t)) = (5 - 2t, t^2 - 3)$ at time *t*. In which direction is the particle moving as it passes through the point (3, -2)?

(A) Up and to the left

(B) Down and to the left

(C) Up and to the right

(D) Down and to the right

(E) Straight up

HOMEWORK

Worksheet 66

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
1/16	INTRO TO POLAR EQUATIONS	Notes Handout
Homework		None

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
1/17	POLAR EQUATIONS AND DERIVATIVES	Notes Handout
HOMEWORK		Worksheet 67

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
1/18	POLAR EQUATIONS AND MOTION	Notes Handout	
AP MULT	AP MULTIPLE CHOICE		
What is the slope of the line tangent to the polar curve $r = 1 + 2\sin\theta$ at $\theta = 0$?			
(A) 2	(B) $\frac{1}{2}$ (C)	(D) $-\frac{1}{2}$ (E) -2	
HOMEWORK		Worksheet 68	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
1/19	AREA ENCLOSED BY	Notes Handout
	POLAR EQUATIONS	
	IPLE CHOICE	
Which o	of the following integrals g	gives the area of the region that is bounded by the graphs of the polar
equation	is $\theta = 0$, $\theta = \frac{\pi}{4}$, and $r = \frac{\pi}{4}$	$=\frac{2}{\cos\theta+\sin\theta}?$
(A) \int_0^{π}	$\frac{1}{\cos\theta + \sin\theta} d\theta$	(B) $\int_0^{\pi/4} \frac{2}{\cos\theta + \sin\theta} d\theta $ (C) $\int_0^{\pi/4} \frac{2}{\left(\cos\theta + \sin\theta\right)^2} d\theta$
(D) $\int_0^{\pi/2}$	$\frac{4}{\left(\cos\theta + \sin\theta\right)^2} d\theta$	(E) $\int_{0}^{\pi/4} \frac{2(\cos\theta - \sin\theta)^2}{(\cos\theta + \sin\theta)^4} d\theta$
Номежа)RK	Worksheet 69
HOMEWO		

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
1/22	AREA ENCLOSED BY	Notes Handout	
	POLAR EQUATIONS		
AP MULT	TPLE CHOICE		
A~			
		y	
The grap	h above shows the polar of	curve $r = 2\theta + \cos \theta$ for $0 \le \theta \le \pi$. What is the area of the region bounded	
by the curve and the <i>x</i> -axis?			
(A) 3.06	69 (B) 4 935	(C) 9.870 (D) 17.456 (E) 34.912	
(11) 5.00			
Hourse	NY	W 11 470	
HOMEWO	JKK	worksneet /U	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
1/23	PARAMETRIC AND POLAR	Review
	EQUATIONS REVIEW	
Homework		Worksheet 71

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
1/24	PARAMETRIC AND POLAR EQUATIONS REVIEW	PARAMETRIC AND POLAR EQUATIONS PRACTICE EXAM
HOMEWORK		Practice Exam

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
1/25	PARAMETRIC AND POLAR	PARAMETRIC AND POLAR EQUATIONS EXAM
	EQUATIONS	
HOMEWORK		None